3.4.59 \(\int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx\) [359]

3.4.59.1 Optimal result
3.4.59.2 Mathematica [C] (warning: unable to verify)
3.4.59.3 Rubi [A] (verified)
3.4.59.4 Maple [A] (verified)
3.4.59.5 Fricas [C] (verification not implemented)
3.4.59.6 Sympy [F(-1)]
3.4.59.7 Maxima [F]
3.4.59.8 Giac [F]
3.4.59.9 Mupad [B] (verification not implemented)

3.4.59.1 Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\frac {32 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {20 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {20 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {4 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^2 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \]

output
32/15*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/ 
2*d*x+1/2*c),2^(1/2))/d+20/21*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x 
+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+32/45*a^2*cos(d*x+c)^(3/2) 
*sin(d*x+c)/d+4/7*a^2*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/9*a^2*cos(d*x+c)^(7/ 
2)*sin(d*x+c)/d+20/21*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d
 
3.4.59.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.19 (sec) , antiderivative size = 548, normalized size of antiderivative = 3.73 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\cos ^{\frac {5}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (-\frac {8 \cot (c)}{15 d}+\frac {23 \cos (d x) \sin (c)}{84 d}+\frac {37 \cos (2 d x) \sin (2 c)}{360 d}+\frac {\cos (3 d x) \sin (3 c)}{28 d}+\frac {\cos (4 d x) \sin (4 c)}{144 d}+\frac {23 \cos (c) \sin (d x)}{84 d}+\frac {37 \cos (2 c) \sin (2 d x)}{360 d}+\frac {\cos (3 c) \sin (3 d x)}{28 d}+\frac {\cos (4 c) \sin (4 d x)}{144 d}\right )-\frac {5 \cos ^2(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d \sqrt {1+\cot ^2(c)}}-\frac {4 \cos ^2(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{15 d} \]

input
Integrate[Cos[c + d*x]^(9/2)*(a + a*Sec[c + d*x])^2,x]
 
output
Cos[c + d*x]^(5/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*((-8*Cot[c] 
)/(15*d) + (23*Cos[d*x]*Sin[c])/(84*d) + (37*Cos[2*d*x]*Sin[2*c])/(360*d) 
+ (Cos[3*d*x]*Sin[3*c])/(28*d) + (Cos[4*d*x]*Sin[4*c])/(144*d) + (23*Cos[c 
]*Sin[d*x])/(84*d) + (37*Cos[2*c]*Sin[2*d*x])/(360*d) + (Cos[3*c]*Sin[3*d* 
x])/(28*d) + (Cos[4*c]*Sin[4*d*x])/(144*d)) - (5*Cos[c + d*x]^2*Csc[c]*Hyp 
ergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + ( 
d*x)/2]^4*(a + a*Sec[c + d*x])^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d* 
x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot 
[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - ( 
4*Cos[c + d*x]^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*((Hype 
rgeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + 
ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[ 
d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[ 
c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + 
Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos 
[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2 
]]))/(15*d)
 
3.4.59.3 Rubi [A] (verified)

Time = 1.29 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.44, number of steps used = 19, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.826, Rules used = {3042, 4752, 3042, 4275, 3042, 4256, 3042, 4256, 3042, 4258, 3042, 3120, 4533, 3042, 4256, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {9}{2}}(c+d x) (a \sec (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{9/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^2}{\sec ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 a^2 \int \frac {1}{\sec ^{\frac {7}{2}}(c+d x)}dx+\int \frac {\sec ^2(c+d x) a^2+a^2}{\sec ^{\frac {9}{2}}(c+d x)}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 a^2 \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a^2 \left (\frac {5}{7} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a^2 \left (\frac {5}{7} \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a^2 \left (\frac {5}{7} \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a^2 \left (\frac {5}{7} \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a^2 \left (\frac {5}{7} \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a^2 \left (\frac {5}{7} \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 4533

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {16}{9} a^2 \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {16}{9} a^2 \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {16}{9} a^2 \left (\frac {3}{5} \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {16}{9} a^2 \left (\frac {3}{5} \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {16}{9} a^2 \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {16}{9} a^2 \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a^2 \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )+\frac {16}{9} a^2 \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )\right )\)

input
Int[Cos[c + d*x]^(9/2)*(a + a*Sec[c + d*x])^2,x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a^2*Sin[c + d*x])/(9*d*Sec[c + d 
*x]^(7/2)) + (16*a^2*((6*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt 
[Sec[c + d*x]])/(5*d) + (2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))))/9 + 2* 
a^2*((2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (5*((2*Sqrt[Cos[c + d*x]] 
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sin[c + d*x])/(3 
*d*Sqrt[Sec[c + d*x]])))/7))
 

3.4.59.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.4.59.4 Maple [A] (verified)

Time = 12.28 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.77

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (560 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-960 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+608 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-96 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-205 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+75 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-168 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+93 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(260\)

input
int(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-4/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(560*co 
s(1/2*d*x+1/2*c)^11-960*cos(1/2*d*x+1/2*c)^9+608*cos(1/2*d*x+1/2*c)^7-96*c 
os(1/2*d*x+1/2*c)^5-205*cos(1/2*d*x+1/2*c)^3+75*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
-168*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipt 
icE(cos(1/2*d*x+1/2*c),2^(1/2))+93*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c) 
^2-1)^(1/2)/d
 
3.4.59.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.19 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=-\frac {2 \, {\left (75 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 75 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 168 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 168 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (35 \, a^{2} \cos \left (d x + c\right )^{3} + 90 \, a^{2} \cos \left (d x + c\right )^{2} + 112 \, a^{2} \cos \left (d x + c\right ) + 150 \, a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d} \]

input
integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 
output
-2/315*(75*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 75*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) - 168*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 168*I*sqrt(2)*a^2*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (35* 
a^2*cos(d*x + c)^3 + 90*a^2*cos(d*x + c)^2 + 112*a^2*cos(d*x + c) + 150*a^ 
2)*sqrt(cos(d*x + c))*sin(d*x + c))/d
 
3.4.59.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(9/2)*(a+a*sec(d*x+c))**2,x)
 
output
Timed out
 
3.4.59.7 Maxima [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)^2*cos(d*x + c)^(9/2), x)
 
3.4.59.8 Giac [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^2*cos(d*x + c)^(9/2), x)
 
3.4.59.9 Mupad [B] (verification not implemented)

Time = 14.28 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.93 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,a^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(cos(c + d*x)^(9/2)*(a + a/cos(c + d*x))^2,x)
 
output
- (2*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c 
 + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (4*a^2*cos(c + d*x)^(9/2)*sin(c 
 + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2) 
^(1/2)) - (2*a^2*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 1 
5/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2))